P P SAVANI UNIVERSITY

First Semester of B. Tech. Examination May 2019

SESH1010 Elementary Mathematics for Engineers

25.05.2019, Saturday

Time: 12:30 p.m. To 3:00 p.m. Instructions: 1. The question paper comprises of two sections.

Maximum Marks: 60

	3. Make s	n I and II must be attempted in separate answer sheets. Suitable assumptions and draw neat figures wherever required.	
	4. USE 01.	scientific calculator is allowed.	
		SECTION - I	
	Q-1	Do as directed: (Any Five)	[05]
	(i)	Find $\lim_{x\to\infty} \frac{\sin\frac{1}{x}}{\frac{1}{x}}$.	[m]
	(ii)	Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is convergent or divergent.	
	(iii)	Write an example of a curve which is symmetric about x-axis.	
1	(iv)	State the general form of the series $\frac{-1}{1+1} + \frac{2}{8+1} - \frac{3}{27+1} + \frac{4}{64+1} - \dots$	
10	(v)	Check whether the graph of the cartesian curve $x^2 + y^2 = 4$ is symmetric or not? If so,	
	(vi)	mention the axis/lines/points of its symmetry. Find $\lim_{x\to\infty} \frac{3x^2-x-2}{5x^2+4x+1}$	
	(vii)	- TIATE	
	Q-2 (a)	State the relation between polar and cartesian coordinates.	
		Show that the sequence $\{u_n\}$, where $u_n=1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{(n-1)!}; n\geq 2$, is convergent.	[05]
	Q-2 (b)	State Lagrange's Mean Value Theorem and hence verify it for $f(x) = lx^2 + mx + n$ in [a,b]	[05]
	Q-2(a)	i) Expand e^x in power of $(x-1)$.	
	£ - (-)	ii) Evaluate $\lim_{x\to 1} (\frac{x}{x-1} - \frac{1}{\log x})$	[05]
	Q-2 (b)	Trace the curve $r = a (1 + \cos \theta)$.	[05]
	Q-3 (a)	Find the n th derivative of $x^2 log x$	[05]
	Q-3 (b)	Given the series $\sum_{n=1}^{\infty} \frac{1}{2^{n+1+(-1)^n}}$, show that	[05]
		i) Show that ratio test fails for this series	
		ii) Using root test, determine whether the series converges or diverges	
		OR	
	Q-3 (a)	Trace the curve $y^2(2a-x)=x^3$ with necessary steps.	[05]
	Q-3 (b)	Test the convergence of following series:	[05]
		i) $\sum_{n=1}^{\infty} \frac{n+1}{n^2} x^n$	[oo]
		ii) $\sum_{n=1}^{\infty} \frac{1}{n(\log n)^2}$	

(i)	Obtain the points of discontinuity of a function f defined on $[0,1]$ as follows: $f(0) = 0, f(x) = \left(\frac{1}{2}\right) - x, if \ 0 < x < \frac{1}{2}, f\left(\frac{1}{2}\right) = \frac{1}{2}, f(x) = \left(\frac{2}{3}\right) - x, if \ \frac{1}{2} < x < 1$, and $f(1) = 1$.	[05]
(ii)	Write the procedure for tracing of cartesian curves.	
	20 No. 51 (500) 100)	
Q-1	Do as directed: (Any Five)	
(i)	Give an example of a homogeneous function.	[05]
(ii)	Compute Γ(10)	
(iii)	Evaluate $\int_{1}^{2} \int_{3}^{5} x^{2}y \ dydx$	
(iv)	Find $\frac{\partial f}{\partial z}$ at (1,4,-3) for $f(x,y,z) = x^2y^2z^2$.	
(v)	Give an example of an improper integral	
(vi) (vii)	Define Beta Function.	
Q-2 (a)	What is the domain of the function $z = \sqrt{y - x^2}$? Prove that:	
Ψ 2 (a)	i) $\beta(m,n) = \beta(m,n+1) + \beta(m+1,n)$.	[05]
	ii) $\int_{a}^{b} (x-a)^{l-1} (b-x)^{m-1} dx = (b-a)^{l+m-1} \beta(l,m), \text{ where } (l,m>0,a>b).$	
	J_a ($b-a$) $ax - (b-a)$ where $(l, m > 0, a > b)$.	
Q-2 (b)	Evaluate $\iint e^{2x+3y} dA$, where the region of integration is a triangle bounded by the lines $x=0,y=0,x+y=1$.	[05]
0.2(2)	OR	
Q-2 (a)	Verify Euler's Theorem when $u=f(x,y)=\frac{x^2+y^2}{x+y}$	[05]
Q-2 (b)	Evaluate: $\iint \frac{xy}{\sqrt{1-y^2}} dxdy$ over the first quadrant of the circle $x^2 + y^2 = 1$.	[05]
Q - 3 (a)	Using the transformation $x + y = u$, $y = uv$, show that	[05]
	$\int_0^1 \int_0^{1-x} e^{\frac{y}{x+y}} dy dx = \frac{e-1}{2}$	[03]
Q-3 (b)	If $x = r\cos\theta$ and $y = r\sin\theta$, show that $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2$	[05]
	$\frac{\partial x}{\partial x} = \frac{\partial y}{\partial r} = \frac{1}{r^2} \left(\frac{\partial \theta}{\partial \theta} \right)$	
Q - 3 (a)	Find the volume of the cone of height h and base radius a.	[05]
Q-3 (b)	If $u = \log(x^3 + y^3 + z^3 - 3xyz)$, show that $(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z})^2 u = -\frac{9}{(x+y+z)^2}$	[05]
Q-4	Attempt any two:	[05]
(i)	Evaluate $\int_0^{\pi/2} \sin^9 \theta \cos^7 \theta \ d\theta$.	feel
(ii)	Find the area enclosed within the curves $y = 2 - x$ and $y^2 = 2(2 - x)$.	
(iii)	Find f_u, f_v, f_w for $f(u, v, w) = \frac{u^2 - v^2}{v^2 + w^2}$.	
	V TW	